主题:翻译

+ 关注 ≡ 收起全部文章

“科普翻译界”的一股清流

《化石:洪荒时代的印记》,[英]理查德·福提著,邢路达、胡晗、王维译,中国科学技术出版社2017年1月出版 ▲《演化》,[法]让-巴普蒂斯特·德·...即将发布

日期:2017年3月17日 - 来自[技术要闻]栏目

清华学者在《自然》发文揭示新的non-stop mRNA翻译终止机制

 

2016年12月1日,清华大学生命科学学院、结构生物学高精尖创新中心高宁课题组和合作者在《Nature》在线发表题为Mechanistic insights into the alternative translation termination by ArfA and RF2的研究论文。该论文报道了大肠杆菌中non-stop mRNA在核糖体上的翻译终止状态复合物的高分辨冷冻电镜结构,并揭示了ArfA在non-stop mRNA翻译终止过程中的作用机制。

核糖体上的蛋白翻译是一个非常复杂的过程,包括翻译起始、延伸和终止等多步严密调控的步骤。在细菌中,当蛋白翻译进行到mRNA上的终止密码子时,翻译终止因子RF1或RF2可以直接识别终止密码子,结合到核糖体上的活性中心,催化释放共价偶联在肽酰tRNA 3’末端上的新生肽链,这个过程受RF1/RF2上保守的催化活性基序Gly-Gly-Gln(GGQ)序列的调控。在细胞中,由于转录提前终止、mRNA错误加工、药物或者物理损伤等会导致细胞中产生缺少终止密码子的mRNA,这类mRNA被称为non-stop mRNA。当核糖体移动到non-stop mRNA的3’末端时,由于缺少终止密码子对RF1/RF2的激活作用,核糖体会停滞在mRNA的3’末端并且不能够进行正常的翻译终止。细胞中积累过多停滞的核糖体会产生毒性,真核生物和原核生物都进化出了相应的质量控制体系来回收这些核糖体。在细菌中,一类针对non-stop mRNA的挽救系统依赖于一种小蛋白ArfA(alternative ribosome rescue factor A)。现有的少量遗传和生化数据表明,当核糖体停滞在non-stop mRNA的3’末端时,ArfA结合到核糖体上的解码活性中心,招募并激活RF2的肽酰水解活性,从而释放新生肽链。然而,众多机制相关的问题尚不清楚,例如ArfA是如何激活RF2的水解功能?ArfA如何区分不同长度mRNA结合的核糖体?

高宁课题组在体外组装了ArfA/RF2、non-stop mRNA、tRNA与70S核糖体的复合物,并获得了该复合物的高分辨冷冻电镜结构(3埃分辨率,核心区域接近2.6埃)。结构表明ArfA C端的loop结合于核糖体30S小亚基上的mRNA进入通道,并部分地占据了终止密码子的结合位点,而N端则直接与30S解码中心及RF2相互作用。进一步的分析表明ArfA扮演了两个重要的角色:其N端作为mRNA长度的感受器(Sensor),如果核糖体尚未行进到mRNA的3’末端,mRNA进入通道内的核苷酸会阻碍ArfA的结合;其C端则通过和RF2直接结合,从功能上补偿了终止密码子对RF2的激活效应。

这项研究展示了自然界的一种奇妙的功能模拟机制:具有极大结构柔性的小蛋白可以通过结构模拟来取代mRNA上的三碱基终止密码子的功能。值得一提的是,在这项工作发表的同一天,Nature和Science同时在线发表了来自德国(慕尼黑大学Wilson实验室)和英国(MRC Ramakrishnan实验室,2009 Nobel化学奖)科学家的相似的工作。

图:ArfA在核糖体上的结合位点

高宁研究组的博士生马成英和日本弘前大学(Hirosaki University)的Daisuke Kurita博士为该论文的共同第一作者。高宁和Hyouta Himeno教授为共同通讯作者。高宁研究组成员李宁宁和陈燕也参与了本课题的研究。冷冻电镜数据采集得到了国家蛋白质科学设施(北京)的清华大学冷冻电镜平台支持,数据处理得到国家蛋白质科学设施(北京)清华大学高性能计算平台的支持。部分计算处理也得到了了北京大学生命联合中心高性能计算平台的支持。本工作获得清华大学结构生物学高精尖创新中心、教育部蛋白质科学重点实验室、科技部重大科学研究计划专项、国家自然科学基金委等的经费支持。

 

日期:2016年12月5日 - 来自[RNA研究]栏目

翻译因子EF4给核糖体挂“倒挡”

中国科学院生物物理所秦燕课题组和清华大学高宁课题组合作,揭示了核糖体在蛋白翻译过程中“倒退”的分子机理,即翻译因子EF4通过释放肽酰tRNA的3’末端催化核糖体的倒退运动。相关成果1月26日凌晨在线发表于《自然—结构与分子生物学》。

核糖体是生命出现前的最后一个必需要素,被生物学家称为地球上所有生命共同唯一祖先的最后成分。“在生命出现前,核糖体的出现标志着以核酶催化合成蛋白的体系的成功建立,使得生物核心活性分子——蛋白质的大规模生产成为可能,从而为生物反应的多样性和复杂性提供物质基础。以核糖体为核心的蛋白质翻译体系,是生命活动中最古老和最核心的分子体系,对细胞内的绝大部分分子体系都有重要的调控功能。”秦燕在接受《中国科学报》记者采访时说。但由于核糖体的复杂性和易降解性,对实验条件和技术平台要求很高,使相关研究挑战重重。

此前,秦燕研究组找到了催化核糖体倒退的酶,将其命名为翻译延长因子4(EF4)。“EF4的分子功能是催化核糖体内的tRNA逆向移位,使核糖体沿着mRNA倒退,从而调控蛋白质的合成过程。”秦燕说。此次核糖体倒退机理的阐述,揭示了核糖体运动双向性机制,“即核糖体在前进过程中也可以倒退,而EF4就是它的‘倒挡’”。

研究对理解核糖体在生命过程中发挥的重要作用提供了分子基础,对于人类进一步认识生命过程具有重要指导意义。从应用前景来看,依据得到的EF4催化机理,研究人员可对病原菌的翻译过程进行人工干预,进而为新型抗生素的研发提供理论基础。

日期:2016年1月27日 - 来自[技术要闻]栏目

中科院科学家在核糖体再循环机制方面取得新进展

 2015年 10月 3日,中国科学院生物物理所秦燕课题组在核酸类重要学术杂志《核酸研究》(Nucleic Acids Research)上发表了题为“New insights into the enzymatic role of EF-G inribosome recycling”的论文,报道了他们在蛋白翻译核糖体再循环过程中延伸因子EF-G所起作用方面的工作进展。

蛋白质翻译是生命活动中的重要环节。众所周知,蛋白质翻译是一个包括起始、延伸、终止和再循环四步的循环过程。每一步都与相应翻译GTP酶及其他翻 译因子的帮助。而翻译延伸因子EF-G是唯一一个同时参与延伸与核糖体再循环两个步骤的GTP酶。延伸过程中,EF-G促进(tRNA)2?mRNA由 A、P位点移位到P、E位点;在核糖体再循环过程中,EF-G与再循环因子RRF一起将核糖体翻译终止复合物拆分为大小亚基,并释放mRNA与脱酰基的 tRNA,以便于下一个翻译循环再利用。因此,对于EF-G的研究有助于加深人类对该过程的理解。

研究人员发现,在EF-G参与核糖体再循环过程中,EF-G能够促进再循环因子RRF结构域的转动,打开核糖体大小亚基间形成的一个主要的亚基桥, 从而促进核糖体大小亚基分开以使核糖体进入再循环。实验中研究人员通过一系列蛋白质生化实验和高分辨率的核糖体低温冷冻电镜结构研究,分析到 EFG/RRF与翻译终止复合物的相互作用,EFG结构域IV的loop II能够打断30S亚基44螺旋与50S亚基69螺旋之间的亚基桥B2a,才能使核糖体大小亚基分开。 

日期:2015年10月15日 - 来自[技术要闻]栏目

蛋白质是怎样“梳妆打扮”的

9月23日,美国伯克利大学教授迈克尔·瑞普(Michael Rape)在《自然》杂志上在线发表了一篇论文,谈到了泛素化修饰依赖的蛋白质翻译的调节决定了细胞的命运。

许多人都知道,细胞内的各种生理生化过程,主要是由蛋白质来负责完成的。一个小小的细胞之内可以含有上百万个蛋白质分子,而蛋白质分子是由核糖体负责翻译合成的。

不过,这些蛋白质大分子在合成之后往往还要经历翻译后的修饰,蛋白质的修饰有着重要的生物学意义。泛素化修饰就是蛋白质翻译后修饰的一种。换句话说,一些“小伙伴”要把蛋白质“梳妆打扮”一番之后,再送它出去“执行任务”。蛋白的翻译后修饰有许多种类,它的“小伙伴”包括磷酸基团、泛素分子、乙酰基、甲基、糖苷链等等,不同的修饰发生在不同的氨基酸残基上。比如,磷酸化修饰可以发生在丝氨酸、苏氨酸和酪氨酸残基上;泛素化和乙酰化主要发生在赖氨酸残基上;而甲基化则可以发生在精氨酸和赖氨酸残基上;糖基化修饰有两类,发生在丝氨酸和苏氨酸上的O-链接糖基化和发生在天冬氨酸上的N-链接糖基化。

那么,经过这些“小伙伴”的妙手之后,“粉饰一新”的蛋白质又会增加什么样的本领呢?

蛋白质的翻译后修饰可以控制细胞的分化。瑞普实验室的工作发现,泛素连接酶CUL3蛋白和它在脊椎动物中的特异性底物接头蛋白KBTBD8是人类和爪蟾神经脊特化所必需的。两种蛋白一起,经过一系列生物化学反应,改装了细胞分化的翻译程序使其支持神经脊细胞的特化。

泛素化修饰的还可以降解体内各种特殊途径的蛋白,从而可以调节信号转导途径。比如生长素分子进入植物细胞内与受体结合,加强了受体与靶蛋白的相互作用,使得靶蛋白被迅速地泛素化修饰,导致靶蛋白的降解。这些靶蛋白包括特定基因的转录抑制子或转录因子,从而激活或者抑制生长素通路上下游基因的表达。

磷酸化修饰也可以成为特定的信号转导途径的开关。在植物中,丝氨酸/苏氨酸受体激酶家族是最大的细胞表面受体家族。以油菜素内酯的信号转导途径为例,油菜素内酯是植物生长和对付各种非生物逆境,如冷害和盐害等的一个重要植物激素。它的受体蛋白就是一个受体激酶。油菜素内酯在胞外与受体蛋白结合,使受体蛋白自身被磷酸化修饰,磷酸化的受体蛋白激活了一系列下游信号,从而促进油菜素内酯早期信号转导功能复合体的形成。

蛋白质的翻译后修饰可以迅速降解细胞内不需要的蛋白。比如,错误折叠的蛋白会被泛素化修饰从而被蛋白酶体降解。可不要小瞧了这一点,一些神经系统的疾病,像阿尔茨海默氏症,也就是人们常说的老年痴呆症,就是错误折叠的蛋白不能被及时降解,积累下来而引发的。

蛋白质的翻译后修饰还可以调节基因的表达。比如组蛋白的泛素化修饰、乙酰化和甲基化修饰。DNA是以超螺旋的形式缠绕在组蛋白组装的核小体上的。组蛋白的这些修饰会改变相应区域的染色质结构,从而增加或减少基因的表达。

蛋白质在翻译的过程中以及翻译之后都需要折叠成正确的三维空间结构,糖基化修饰则有助于蛋白质的正确折叠和定位。不过对于这一过程的细节,我们了解得很少。蛋白还可以被多种脂肪酸修饰,这些往往与受体识别有关,参与许多生命过程,比如雌雄配子的结合。

蛋白质和它的小伙伴们之间的故事是生命在漫长的进化过程中呈现出的精彩一幕。它使得小到一个细胞,大到整个有机体,可以在多个层面上对生命活动进行“粗调”和“细调”。可以说,从医疗健康到农业生产,蛋白质的“故事”和人们的生活息息相关。

不过,现在仍有许多翻译后修饰的生物学意义还不被人所知,还有许多翻译后修饰尚未被发现。这使得蛋白质翻译后修饰这个领域的研究一直是生命科学领域的研究热点。

日期:2015年10月9日 - 来自[技术要闻]栏目

非翻译区调控合成提高L-酪氨酸产量

L-酪氨酸是商业上重要的化合物,因为它被广泛地用作医药中间体和其他高值化学品前体(如类黄酮和生物碱)。传统上,L-酪氨酸由萃取方法产生,但是这样低效的生产方法难以满足L-酪氨酸的日益增长的需求。因此急需开发L-酪氨酸高效生产方法。

9月8号,nature子刊scientific report在线发表美国加州大学圣地亚哥分校和韩国浦项工科大学关于L-酪氨酸合成途径优化的最新合作结果。

文章主要从两个方面进行途径优化,即翻译水平表达调控和围绕磷酸(PEP)节点的碳通量再平衡。在翻译水平表达调控方面,人工合成的组成型启动子和合成5'-非翻译区(5'-UTR)被用来调控L-酪氨酸合成途径中的关键酶,从而实现在转录水平和翻译水平的控制。碳通量平衡同样通过控制用5'-非翻译区(5'-UTR)设计达到PEP合成酶的表达水平控制。

图1. L-酪氨酸生物合成途径工程策略

最终通过获得生产L-酪氨酸的大肠杆菌工程菌,最高达到L-酪氨酸3.0g / L的发酵单位,其中生产效率为0.0354克L-酪氨酸/小时/克菌干重,转化效率为0.102克L-酪氨酸/克葡萄糖产量为提高。因此,该工作表明由5'-非翻译区(5'-UTR)调控翻译水平的重设计途径优化思路是一种有效的策略,能促进高效的L-酪氨酸高产菌的开发。

图2. 微调的PEP节点PPSA表达实现碳通量再分配

更多生物催化内容请关注微信公众服务号:生物催化剂设计与改造服务(STS-iDeep)


日期:2015年9月22日 - 来自[技术要闻]栏目

科技日报:动物名称翻译不可简单了事

 

本报记者 刘 莉

近几年,随着出国旅游的人数增多,北京麋鹿苑副主任郭耕经常听到朋友们跟他说“我在美国看见麋鹿了”,“我在加拿大看见麋鹿了”,郭耕觉得新奇:这种中国特有的物种在北美也有?“能让我看看图片吗?”

一看才发现那些是驼鹿(moose)、马鹿(elk)和驯鹿(reindeer)。“麋鹿正确的英文名是milu或David’s deer,但在大多数英汉词典中,都出现了错误的翻译,把驼鹿(moose)、马鹿(elk)和驯鹿(reindeer)都翻译成了麋鹿。导游也这样讲,就造成了误解。”郭耕说。

记者翻看了在新华书店购买的外语教学与研究出版社《英汉小词典》第二版,其中moose和elk分别被翻译成“麋,驼鹿”“驼鹿,麋”;reindeer被翻译成“驯鹿”。在记者电脑上安装的有道词典中,这三个词被分别翻译为:“驼鹿,麋”“麋鹿”和“驯鹿”。在商务印书馆《牛津高阶英汉双解词典》第四版增补本中:moose一词标注为“=elk”;而elk则被翻译为“公式,驼鹿,赤鹿”;reindeer被译为“驯鹿”。一圈词典查下来,确实让记者有些混乱的感觉。

翻译不准确造成人们对动物物种的混淆,郭耕觉得这是个大问题。“科研人员研究中都会分得很清楚,但在教学和科普过程中,学生和普通公众就很容易混淆。”

对麋鹿的翻译有些词典是完全错误的,还有些动物的中文翻译在郭耕看来“过于简单,不够科学”。比如大猩猩(gorrila)、黄猩猩(orangutan)和黑猩猩(chimpanzee)是三种完全不同的大型类人猿,英文完全不同,但中文翻译却十分相似。“简单的翻译让人很难分辨不同的物种”,他曾在中央电视台的节目中看到主持人指着一个动物说“大黑猩猩”,“那到底是什么呢?”郭耕觉得很疑惑。类似简单翻译还有大熊猫(panda)和小熊猫(red panda)。

还有一类翻译让人很难理解:长颈鹿(giraffe)不是鹿却被翻译成鹿;犀牛(rhinoceros)不是牛却被翻译成牛;河马(hippo)不是马也被翻译成马。“这种简单的翻译方法不利于科学普及,希望翻译中能更多体现科学性。”郭耕说。(科技日报北京8月22日电)

 

日期:2015年8月23日 - 来自[技术要闻]栏目

生物学家揭秘“蛋白质翻译”的真相!

科学家们开发了一个新荧光标记技术,首次确定了蛋白质合成的时间和地点。该技术允许研究者在活细胞中直接观察mRNA分子翻译成蛋白质的过程,有助于揭示蛋白质合成异常引发人类疾病的具体机制。这项研究发表在三月二十日的Science杂志上。

“过去我们一直没能确切查明mRNA翻译成蛋白质的时间和地点,”Robert H. Singer教授说,他是这项研究的领导者之一。“这种信息对于研究疾病的分子基础很关键,比如说脑细胞的蛋白合成失调如何导致神经退行性疾病中的记忆缺陷。”

蛋白质合成的指令编码在细胞核内的基因中。从这些指令到真正的蛋白质,需要经过转录和翻译这两个步骤。在转录过程中mRNA“读取”基因的DNA序列。随后这些mRNA从细胞核移动到细胞质与核糖体汇合,作为模板进行蛋白合成的第二步——翻译。

为了观察翻译过程,Dr. Singer及其同事利用了第一轮翻译开始时的一个关键事件:核糖体取代mRNA上的RNA结合蛋白。研究人员给mRNA分子标记上绿色和红色两个荧光蛋白。在mRNA生成的细胞核内,带有两种荧光蛋白的mRNA表现为黄色。在进入细胞质以后,mRNA的颜色就取决于它们的命运。

当mRNA与核糖体结合时,核糖体取代mRNA的绿色荧光蛋白。结果是结合核糖体并准备翻译蛋白质的mRNA呈现红色,而所有未翻译的mRNA呈现黄色。研究人员将这一技术命名为TRICK(Translating RNA Imaging by Coat protein Knock-off)。

为了测试这一技术的实用性,研究人员在果蝇卵母细胞中检测了oskar mRNA表达的时间和地点。果蝇是研究人类疾病的常用模型,而oskar对于果蝇胚胎的正常发育非常关键。研究人员给oskar mRNA标记上红色和绿色荧光蛋白,并将其插入果蝇卵母细胞的细胞核。

“我们看到,oskar mRNA到达卵母细胞后极才开始翻译,”Dr. Singer说。“我们之前曾经这样推测过,而现在我们有了决定性的证据。研究者们可以用TRICK技术在果蝇发育过程中剖析mRNA翻译所需的一系列调控事件。”

研究人员还发现,mRNA走出细胞核之后没有马上开始蛋白质翻译, 而是进入细胞质几分钟之后才开始翻译。“我们从来不知道存在这样一段时间,”Dr. Singer说。“这是TRICK带来的又一个新知识。”

日期:2015年3月26日 - 来自[技术要闻]栏目
共 8 页,当前第 1 页 9 1 2 3 4 5 6 7 8 :


关闭

网站地图 | RSS订阅 | 图文 | 版权说明 | 友情链接
Copyright © 2008 39kf.com All rights reserved. 医源世界 版权所有
医源世界所刊载之内容一般仅用于教育目的。您从医源世界获取的信息不得直接用于诊断、治疗疾病或应对您的健康问题。如果您怀疑自己有健康问题,请直接咨询您的保健医生。医源世界、作者、编辑都将不负任何责任和义务。
本站内容来源于网络,转载仅为传播信息促进医药行业发展,如果我们的行为侵犯了您的权益,请及时与我们联系我们将在收到通知后妥善处理该部分内容