主题:磁共振

+ 关注 ≡ 收起全部文章
336*280_ads

一种新开发的磁共振成像扫描技术能更有针对性地检测中风风险

中风是中医学对急性脑血管疾病的统称。它是以猝然昏倒,不省人事,伴发口角歪斜、语言不利而出现半身不遂为主要症状的一类脑血液循环障碍性疾病。由于中风发病率高、死亡率高、致残率高、复发率高以及并发症...即将发布

日期:2017年9月6日 - 来自[待分类信息]栏目
循环ads

医学磁共振成像:艺术般令人着迷

波若波罗蜜!菠萝磁共振!这不是玩笑,也不是玩闹!这是我们在体验磁共振成像究竟有怎样的精密度。市场买个菠萝,置于磁体中,片刻功夫菠萝内部结构就清晰地呈现在屏幕上,虽然无法获知其甜蜜度,但是它的结构如何却能一目了然。这就是磁共振的魅力!对于小小的一个苹果,它也同样easy!

磁共振成像,英文全称是Magnetic Resonance Imaging,简称MRI。这项技术在诞生之初曾被称为核磁共振成像,即Nuclear MRI。到了20世纪80年代初,作为医学新技术的核磁共振成像(NMR Imaging)一词越来越为公众所熟悉。随着大磁体的安装,有人开始担心字母“N”可能会对磁共振成像的发展产生负面影响,另外,“nuclear”一词还容易使大众对磁共振室产生另一个核医学科的联想,因此,为了突出核磁共振检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。

核磁共振成像的“核”指的是氢原子核,因为人体中约70%是由水组成的,MRI即依赖体内水中的氢原子。当把物体放置在磁场中,用适当的电磁波照射并使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像。核磁共振成像是随着电脑技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术,它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经电脑处理而成像的,磁共振成像是断层成像的一种。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象,基于这一物理现象,1972年Paul Lauterbur发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。以上三人均获得了诺贝尔奖。

磁共振成像技术与其它断层成像技术(如CT)相比有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布,但同时也有它自身的特色,如磁共振成像可以得到任何方向的断层图像,甚至可以得到空间-波谱分布的四维图像。但与CT、PET和SPECT不同的是磁共振成像不用注射放射性同位素就可成像。这一点也使磁共振成像技术更加安全。

从磁共振图像中我们可以得到物质的多种物理特性参数,如质子密度,自旋-晶格驰豫时间T1,自旋-自旋驰豫时间T2,扩散系数,磁化系数,化学位移等等。对比其它成像技术(如CT超声PET等)磁共振成像方式更加多样,所得到信息也更加丰富。因此磁共振成像成为医学影像中一个热门的研究方向。

MR也存在不足之处:它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR检查;扫描时间也相对较长,因而对一些不配合患者的检查常感困难,对运动性器官,例如胃肠道因缺乏合适的对比剂,常常显示不清楚;对于肺部,由于呼吸运动以及肺泡内氢质子密度很低等原因,成像效果也不满意;磁共振成像对钙化灶和骨骼病灶的显示相比CT亦欠准确及敏感。

但磁共振成像与CT一样,几乎适用于全身各系统的不同疾病,例如肿瘤、炎症、创伤、退行性病变,以及各种先天性疾病等的检查。磁共振成像无骨性伪影,可随意作直接的多方向(横断、冠状、矢状或任何角度)切层,对颅脑、脊柱和脊髓等的解剖和病变的显示,尤优于CT,磁共振成象借其“流空效应”,可不用血管造影剂,显示血管结构,故在“无损伤”地显示血管(微小血管除外),以及对肿块、淋巴结和血管结构之间的相互鉴别方面,有独到之处。磁共振成像有高于CT数倍的软组织分辨能力,它能敏感地检出组织成分中水含量的变化,故常可比CT更有效和早期地发现病变。通过磁共振血流成像技术的研究获得的进展,使在活体上测定血流量和血流门控的使用,使磁共振成像能清楚地、全面地显示心脏、心肌、心包以及心内的其他细小结构,为无损地检查和诊断各种获得性与先天性心脏疾患(包括冠心病等),以及心脏功能的检查,提供了可靠的方法。随着各种不同的快速扫描序列和三维取样扫描技术的研究和成功地应用于临床,磁共振血管造影和电影摄影新技术已步入临床且日臻完善。磁共振成像和局部频谱学的结合(即MRI与MRS的结合),以及除氢质子以外的其他原子核如氟、钠、磷等的磁共振成像,这些成就将能更有效地提高磁共振成像诊断的特异性,也开阔了它的临床用途。

医学MRI,既包含影像诊断水平,也包括成像扫描技术,科学细致的扫描计划才能为医师诊断获取充分依据与信息。我们就是在日积月累的工作中不断吸取经验、开拓进展,发挥自身技术优势,为提高影像科诊断技术不停努力!

日期:2015年11月7日 - 来自[技术要闻]栏目

飞利浦医疗保健发布全新一代3.0T磁共振

磁共振问世三十年,但仍然面临着信号与噪声相生相伴,如何去伪存真?巨大的病人检查负荷,如何精益求精?个性医疗时代的到来,如何精确定量?这是目前影像学界热议的话题。

今天,飞利浦医疗在中国盛大发布全新一代3.0T磁共振(Digital Network Architecture MR,简称 DNA 磁共振)。在以“精准影像 数字先行”为主题的发布仪式上,来自国内外影像学界及临床应用领域数百名的专家学者,共同探讨了磁共振数字化的最新进展及未来发展趋势。

作为医疗影像行业的全球领导者,飞利浦于2012年推出全球首台全数字磁共振 Ingenia,实现了业界首创的数字线圈、数字接口与全程数字传输,突破了传统磁共振模拟信号源的瓶颈,最终保证获得原始图像信号的100%真实还原。此次全新发布的 DNA 磁共振,加载先进的数字网络控制系统,从而控制射频、梯度、重建各核心部件实时同步、精准协作,还原影像本真,实现图像的精准定量。飞利浦医疗保健集团副总裁、大中华区诊断影像事业部营销总经理席渭龄女士说:“飞利浦推出的第一代全数字磁共振 Ingenia 获得了临床医生及科研专家的一致认可。在此基础之上,DNA 磁共振基于数字网络控制系统带来的实时同步控制和精准计算结果,将继续引领临床科研的精准革命。”

DNA 数字控制系统通过数字时钟同步技术,实现全数字化信号时序,解决以往成像过程中触发时间不精准、翻转角度不完全、高延时、低带宽等问题,保证低延时、高带宽的信号控制。这一技术突破将大大满足高端临床科研合作所提出的精准性要求。在发布现场,伦敦大学医学影像中心主任 Gary Zhang 分享了“NODDI 神经科研的应用进展”,并提出 DNA 磁共振提高了 NODDI 研究的精准度。NODDI 指神经导向的分散性和密度成像,是磁共振精准成像的重要医学课题。

中国医科大学副校长,中国医科大学附属盛京医院院长郭启勇教授认为:“精准医学的基础是精确的科学诊断、对治疗方案的精确制定及调整、对疗效精确的评估,其前提必须具备精准的医疗设备。”DNA 磁共振不仅在临床应用上拥有绝佳的性能,其在快速扫描流程、高清成像和精准定量方面,亦表现卓越。

与会专家一致认为“全数字”是磁共振成像的领先技术,也是未来的发展趋势。随着“精准医疗”成为医疗行业的最新热点,致力于更加清晰的“精准影像”在医疗影像领域必将掀起又一风暴。

日期:2015年10月21日 - 来自[技术要闻]栏目
循环ads

功能性磁共振成像可预测抑郁症复发风险

英国伦敦大学国王学院10月7日发布研究成果说,利用功能性磁共振成像技术,医护人员能更准确判断康复中的重度抑郁症患者中哪些人更易复发。

来自伦敦大学国王学院和曼彻斯特大学的研究人员对64名患重度抑郁症但症状已缓解的病人实施功能性磁共振成像扫描,以研究他们脑部出现的变化。

扫描后,研究人员对这些病人进行了持续14个月的跟踪观察,最终有27名病人抑郁症复发。

研究人员发现,从扫描结果看,复发的病人大脑中两个部位,即前颞叶和膝下区的相互关联性变得非常高,而症状持续缓解的病人并没有发现这种现象。

为进一步验证,研究人员让另外一组39人接受了这种成像扫描。他们都没有重度抑郁症的个人和家族病史。结果显示,他们大脑的这两个部位也没有出现较强的关联性。

据研究人员介绍,他们依照大脑的上述特征就能判断康复中的抑郁症病人是否会复发,准确率能达到约75%。

伦敦大学国王学院学者罗兰·扎恩说,这一新方法还需要经过更多测试和改进,以便将准确率提高到80%。届时,它就能真正用于临床,从而填补目前尚无办法准确预测抑郁症复发几率的空白。

这项研究已发表在期刊《美国医学会杂志·精神病学卷》上。

日期:2015年10月9日 - 来自[技术要闻]栏目

功能性磁共振成像可预测抑郁症复发

英国伦敦大学国王学院7日发布研究成果说,利用功能性磁共振成像技术,医护人员能更准确判断康复中的重度抑郁症患者中哪些人更易复发。

来自伦敦大学国王学院和曼彻斯特大学的研究人员对64名患重度抑郁症但症状已缓解的病人实施功能性磁共振成像扫描,以研究他们脑部出现的变化。

扫描后,研究人员对这些病人进行了持续14个月的跟踪观察,最终有27名病人抑郁症复发。

研究人员发现,从扫描结果看,复发的病人大脑中两个部位,即前颞叶和膝下区的相互关联性变得非常高,而症状持续缓解的病人并没有发现这种现象。

为进一步验证,研究人员让另外一组39人接受了这种成像扫描。他们都没有重度抑郁症的个人和家族病史。结果显示,他们大脑的这两个部位也没有出现较强的关联性。

据研究人员介绍,他们依照大脑的上述特征就能判断康复中的抑郁症病人是否会复发,准确率能达到约75%。

伦敦大学国王学院学者罗兰·扎恩说,这一新方法还需要经过更多测试和改进,以便将准确率提高到80%。届时,它就能真正用于临床,从而填补目前尚无办法准确预测抑郁症复发几率的空白。

这项研究已发表在期刊《美国医学会杂志·精神病学卷》上。

日期:2015年10月9日 - 来自[技术要闻]栏目
循环ads

一口“仙气”点亮肺部


上图为中科院武汉物数所周欣在操作“点亮”肺部的核心设备:一台能放大氙气信号的自主研发设备。中图为中科院武汉物数所的研究团队发布我国首幅超极化氙-129肺部磁共振影像。本报记者 杜 芳 摄 下图为受试者被推进核磁共振谱仪进行检测。

中国科学院武汉物理与数学研究所成功研制出气体产率高、控制自动化、可移动式的氙-129气体极化装置,该装置能够形成肺部清晰影像,为攻克肺癌、尘肺等高发顽疾提供有力数据支撑——

传统磁共振成像技术的“盲区”——肺部,如今终于被中国科学院武汉物理与数学研究所“点亮”。9月6日,一例肺病(哮喘)志愿者在接受了超级化氙-129肺部磁共振仪器检测后,首幅病人人体超极化气体肺部磁共振影像诞生。该影像不仅能清晰地看到病人的病变部位,还能提供一系列评价肺部功能的数据。这就意味着,今后,医生不仅可以利用磁共振技术对肺病发作的前期诊疗做出更科学和清晰的影像判断,还可以看清肺部功能变化,并在临床上建立庞大的参数库,为攻克肺癌、尘肺等高发顽疾提供强大的数据支撑。

6秒看透整个肺部

武汉大学23岁的医学院学生小邹患有哮喘,“一到下雨天就感觉憋得喘不上气来。”除了基本的肺功能检查,小邹还到医院拍了CT片(计算机断层扫描),但是目前的这些技术手段都不能完全清晰地看到小邹的肺部细节。自己的肺部究竟有几个病灶?病变对肺部的功能影响怎样?小邹期待一架“像素更高”的“相机”为肺部拍照后能回答这些疑问。

日前,中国科学院武汉物理与数学研究所的一项研究让小邹如愿以偿。9月6日,小邹成为该研究所研制的超级化氙-129肺部磁共振仪器的第一位受试肺病患者,这台仪器通过磁共振的方法对小邹的肺部进行了成像。

在中科院武汉物理数学所波谱与原子分子物理国家重点实验室,为了让小邹能提早适应呼吸不同的气体,在医生的指导下,小邹用氮气进行了两次吸气练习。之后,小邹穿好布满了高灵敏肺部成像探头的马甲,被推入核磁共振谱仪。他既不需要被注射什么药剂,也不用任何器械介入,只需要像潜水之前的深呼吸一样,把一袋密封好的超级化氙气吸进去,憋气6秒左右,检测室外的电脑屏幕上就清晰地显示出小邹的肺部磁共振影像。

“真是太快了!”小邹说。一般核磁共振的检测手段至少要一刻钟,长的时候甚至需要半个小时,短短6秒就成像,还没反应过来,检查就宣告结束了。这样的速度连医生也觉得有点不可思议。

6秒成像质量如何?在小邹的肺部影像上,左肺叶下部有一块明显的通气缺陷,对比之前小邹所做的CT图像,这个结果与传统检测方法显示的结果一致;然而,影像中右肺叶上清晰地显示出一个小黑点却是利用CT检测不到的新的病变组织。“这个小黑点表示这部分肺泡已经不能实现气体交换,也就是说这是一个小的病灶。”武汉大学中南医院医学影像中心教授吴光耀说。

让肺部的小细节暴露无遗,这对于肺部疾病的认识和诊疗意义重大。“病灶有小的,有大的,有时候是小病灶与大病灶共存,有时候全部都是小病灶。对于疾病的多种不同的表现形式,看得越清,越有利于诊断。”吴光耀说。

在小邹的整个肺部诊疗中,通过无创的方法就能实现可视化的评估。“病在哪里不是凭着医生一张嘴说,这个病变结果就显示在电脑上,谁都可以看到。而且对于肺功能的判断以往大夫之间会有差别,可视化的方法让评判更加标准化、客观化。可以说,这项技术对评估病人病情、了解整个疾病的发病过程、预后的判断乃至对研制新药物疗效的评价,都会有很好的帮助。”吴光耀说。

特制氙气放大“盲区”信号

以往的肺部成像更多选用常规的胸透、计算机断层扫描(CT)和正电子发射计算机断层扫描(PET)等技术,这些技术一方面有放射性,可能对人身体产生一定伤害,更重要的是,它们都不能全面提供衡量肺部健康状态的重要指标——肺部气-气交换和气-血交换功能指标。

与这些常规的技术不同,磁共振技术是一种对人体无放射性伤害的检测手段。不仅能对人体大部分组织器官的结构进行成像,而且能够对其功能进行成像,在医学诊断和研究中显示出诸多优越性。但遗憾的是,用磁共振检测人体,大部分组织都可以成像,唯独肺部区域呈现大面积的黑色,犹如一个神秘的黑洞,成为这项技术无法感知的“盲区”。

磁共振为什么单单不能看透肺部呢?专家介绍,由于磁共振技术是基于人体中水质子的信号,但肺部内多是气体和空腔组织,其水质子的浓度比正常组织低约1000倍,因此磁共振技术无法实现肺部的可视化。

要“点亮”肺部,就要获得信号增强大于数万倍的气体信号。这种气体需要满足4个条件:自旋二分之一、信号保持时间长、无毒、没有生物体背景噪音。科学家在元素周期表上筛来筛去,只有两种气体满足这些属性:氦-3和氙-129。

实际上在中科院之前,美国科学家就在用氦-3进行试验,也取得了一定成效,但中科院却没有沿着这条老路走下去,而是果断选择了后者。“有两点原因,一是相比氙气,氦-3气体资源在地球上极其稀缺,制备的成本非常高,大面积应用于临床有一定的挑战。二是肺功能主要体现在气体与气体交换、气体与血液交换两个方面。氦-3只能检测气体与气体交换,检测不了气血交换,而氙气两种都可以检测。”中科院武汉物数所波谱与原子分子物理国家重点实验室研究员周欣说。

这个听起来像“仙气”的氙气对于人们而言其实并不陌生,在大众生活中被广泛应用,比如汽车的氙灯、霓虹灯、LED的屏幕等都是利用氙气制成。专家介绍,氙气是一种惰性气体,类似于空气中的氮气,不与人体组织产生化学反应,无毒无害。

亲自参与了试验的小邹证实了这一点。“氙气没有味道,吸入后也不会感觉难受,就和呼吸空气差不多。”小邹说。周欣告诉《经济日报》记者,因为人一般的肺活量是3升,平常呼出去吸进来的量约为一升,还有两升气体留存在肺里,因此,在对小邹的检测过程中,小邹吸入700毫升氙气加上200毫升的氧气,这就和平时呼吸的感受基本上一样。

普通的氙气并不足以“点亮”肺部,关键是要“超极化”,即增强气体的信号强度,这是整个研究的难点所在。

如何克服这项技术难关?“每个人身体里都有水,水分子中每个质子都有自旋,就像一个个微观的‘陀螺’。自旋大约一半朝上,一半朝下,就基本抵消了,磁性就会变弱,信号就没那么强。人体肺部超极化气体磁共振技术,就是要让微观世界的原子核自旋的‘陀螺’朝一个方向旋转,角动量积聚而非抵消,从而极大增强气体信号,进而让肺部气体‘可视’成为可能。为此,科学家通过激光把光子角动量转移到电子,再由电子转移到磁共振的核自旋上,让质子自旋的方向排列基本一致,变成朝着一个方向走的‘方阵队伍’,磁性大大增强。”周欣说。

利用这个原理,武汉物数所成功研制出了气体产率高、控制自动化、可移动式的氙-129气体极化装置,这种装置能够将原子核自旋的极化度增强倍数提高到4.4万倍以上,从而使肺部气体磁共振信号可以被接收继而形成肺部影像,从此,肺部不再是磁共振盲区,利用磁共振这一优越技术,将大大推动早期肺部重大疾病的深入研究。

看肺部“颜值”更看功能

用磁共振拍摄一张肺部影像,能显示完整的肺部结构,气管、支气管、肺叶清晰可见。并且凭借增强4.4万倍的气体信号,能展示肺部3D立体重建效果图。然而,点亮肺部的技术看的不仅仅是肺部“颜值”,更重要的是可以对于肺部通气功能、气血交换的生理功能也进行定量的评价,以前无法用影像检测的肺部气血交换时间、肺部氧消耗能力的空间分布等,现在都可以通过这项技术全部看到。

通过点亮肺部,能获得哪些指标?“首先能获知肺泡的表面体积比和肺泡的壁厚等参数,其次能得到血液里血红蛋白和血清的数量,最后还能得知要用多长时间,气体才能进入到血液里面。”周欣说。

在医学中,这些都是重要的指标参数。“举个例子,如果是一个肺部纤维化的病人,气血穿过纤维化的屏障,交换时间变长,氧气消耗时间变长,人们可能短期感觉不到,但供氧速度长期跟不上,就可能导致癌症等疾病的发生。现在通过新的技术手段能够定量化地检测气血交换的各项参数,对于科学研究肺部疾病的发生发展过程有重要的意义。”周欣说。

“今后这项技术还要做多模态的比较,现在我们正在着手做更多的实验,建立真正的肺疾病数据库,凭借超极化气体这项技术,很多疾病的认识会重新改变,我们要为新的知识的获取寻找更客观的依据做支撑。”吴光耀说。

周欣希望凭借这项技术得出更多定量且全面的生理参数。“我们至少要做一百例病人,并对他们进行长期跟踪,获得一般正常的指标的范围,然后用这个指标辅助筛选和诊断。”周欣说。

此外,技术方面,周欣及其团队还将进一步提高气体的极化度,增强信号的强度,制作电路系统和线圈等,并将此项技术和分子探针结合,检测不同的癌细胞,从分子和细胞层面对重大疾病做诊断。

专家表示,这项技术将在我国有非常大的应用空间,因为近年来,由于吸烟、空气污染、人口老龄化等多种因素,慢性阻塞性肺疾病、哮喘、尘肺等肺部发病率逐年上升。我国2015年发布的肿瘤发病率统计年报表明,肺癌的发病率和死亡率仍然居恶性肿瘤首位。

目前,超极化气体肺部磁共振成像设备已经在哮喘、慢阻肺、肺纤维化等多种肺部疾病研究的诊断及预后的评估中具备了有效性和优越性,但是该仪器现在还未用于临床。国内外医学界已经意识到这项技术的潜力,并正在开展相关研究。周欣及其团队希望该技术能尽早实现临床应用,以早日造福肺病患者。

日期:2015年10月8日 - 来自[呼吸系统相关]栏目

我国自主研发的超极化气体肺部磁共振成像仪获得首幅影像

 

人口健康直接影响到一个国家的经济发展和社会进步。近年来,由于吸烟、空气污染、人口老龄化等多种因素,我国肺部疾病的发病率逐年上升。研发出更有效的仪器进行肺部疾病的早期诊断成为当前国际医学界研究的热点和难点。

2010年,中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室周欣研究员领衔的团队开始开展超极化气体肺部MRI成像技术研究,欲对人体肺部气体交换功能实现可视化,从而能够尽早发现肺癌。日前,该团队取得了重大突破。9月4日,基于这项技术,他们研发的肺部磁共振成像仪已经获得了我国首幅超极化氙—129(129Xe)人体磁共振影像。9月6日,团队又开始了这项技术的临床前研究,通过与武汉大学中南医院吴光耀教授团队合作,获得了我国首例肺部病人(哮喘)的气体磁共振影像。

已有技术存在不足,阻碍肺癌等疾病的及早发现

目前,临床上用于肺部疾病检测的影像学技术包括胸透、计算机断层扫描(CT)和正电子发射计算机断层扫描(PET)以及传统磁共振成像(MRI)等。

X射线的胸透和CT是临床上最常用的肺部成像方法。胸透的方法只能获得胸腔的投影图像,成像质量不高。利用高分辨CT成像可以得到清晰的肺部结构图像,但不能提供相应的肺部功能信息。单光子发射计算机断层影像和正电子发射计算机断层扫描可以得到肺部部分功能和结构的空间信息。但是这两种影像方式的空间分辨率都比CT低很多。

虽然这些方法都能够得到肺部的空间结构和一定的功能信息,但是这些方法都具有放射性,同时肺是对辐射非常敏感的器官,这些放射性的影像方法可能会对受试者造成一定的放射性损伤,另一方面,这些成像技术都不能全面提供衡量肺部健康状态的重要指标——肺部气—气交换和气—血交换功能指标。“这极大地阻碍了对肺部重大疾病早期的深入研究,等发现肺部结构病变时,通常都已经到了癌症中晚期。”吴光耀说。

相比以上肺部疾病检测影像学技术,磁共振成像(MRI)是一种无放射、无侵入的影像学技术,它不仅能对人体大部分组织和器官的结构进行成像,也能对其功能进行成像,但肺部空腔却一直是它的“盲区”。

传统的磁共振成像都是基于人体中水质子(1H)的信号,但对于具有许多气体和空腔组织的肺部,其水质子浓度比正常组织低约1000倍,图像上表现为黑色空腔区域。为了把这个黑色空腔区域“点亮”,必须获得信号增强大于数万倍的气体信号。

“看清”肺部气体交换功能,为多种疾病的诊断带来可能

为了能将肺部空腔“点亮”,2010年,周欣团队开始开展超极化气体肺部MRI成像技术研究,并最终选择氙—129作为成像所需的气体。据了解,超极化氙—129良好的脂溶性和化学位移敏感性,使其在肺部气血交换功能探测上具有独特的优势,不仅能反映肺部的形态学信息,也可以提供肺部的生理功能信息,能够只使用一种手段就得到扩散、弥散、灌注等多方面信息。

“我们这项研究不仅获得肺部的结构信息,还将对肺部气体交换功能进行可视化研究,从而展开人体肺部重大疾病的诊断前研究。”周欣说,“主要原理是:先利用激光技术增强电子自旋信号,然后将电子信号转移增强惰性气体的磁共振信号,进而对肺部气体进行成像。”

在核磁共振扫描间外,通过视频监控器,吴光耀介绍了完成一次超极化氙—129肺部磁共振成像的整个过程。

吴光耀说,在做检测之前患者需要填一份知情同意书,然后再测试身体生理指标。“这些测试包括血压、脉搏和肺功能等,目的是为了监测患者在前后生理指标有什么变化。”

由于检测时患者要吸入氙气,为了让他们能提早适应,所以在检测前有两次吸气练习。一次练习在进入扫描间之前进行,另外一次则在正式检测前,练习用的气体是氮气。

进入扫描间前,患者必须先穿上一个像小马甲一样的线圈,然后平躺在检测床上。接下来患者将提前制备好的一袋氙—129慢慢吸入,屏住呼吸6秒钟,整个检测就完成了。过程很快,患者不会有任何不适感。

超极化氙—129肺部磁共振成像技术突破了传统磁共振成像不能对肺部空腔成像的限制,成功“点亮”肺部,为多种疾病的诊断及分期带来可能。(原标题:中国科学家“点亮”肺部(发现))

 

日期:2015年9月8日 - 来自[呼吸系统相关]栏目
循环ads

中科院研制出肺病早期检测的磁共振成像系统

 

■本报记者 丁佳 鲁伟

9月7日,23岁的哮喘病人小邹经历了一次特殊的磁共振检查。

在中科院武汉物理与数学研究所波谱与原子分子国家重点实验室的核磁共振扫描室,技术人员给他穿上了一件特殊的“马甲”,又递给他一袋气体。小邹按照训练的方法将气体吸进去,然后屏气6秒钟。

在这神奇的几秒之间,我国第一幅肺部疾病磁共振影像诞生了。

诺奖得主的遗憾

目前,临床上用于肺部疾病检测的影像学技术包括胸透、计算机断层扫描(CT)、正电子发射计算机断层扫描(PET)等。X射线的胸透和CT是临床上最常用的肺部成像方法,但胸透只能获得胸腔投影图像,成像质量不高;PET空间分辨率远低于CT;高分辨CT成像可得到清晰的肺部结构图像,但不能提供相应的肺部功能信息。

更要命的是,这些方法都具有放射性,而肺是对辐射非常敏感的器官,这些放射性的影像方法可能对受试者造成一定的放射性损伤。

2003年,美国和英国的两位科学家因发现核磁共振成像技术而获得诺贝尔奖。磁共振成像(MRI)作为一种无放射、无侵入的影像学技术,不仅能对人体大部分组织和器官的结构进行成像,也能对其功能进行成像,在人类健康和公共卫生事业中发挥了巨大作用。

唯有肺部是个例外。传统的MRI都是基于人体中水质子(1H)的信号,但肺里绝大多数都是气体,因此在图像上表现为黑色区域,是传统人体MRI中唯一的“盲区”。“现在还没有一种能无侵入、无辐射地对肺部气体交换功能进行可视化成像的设备,这极大地阻碍了对早期肺部重大疾病的深入研究。”中科院武汉物数所研究员周欣很想发明一种方法,“点亮”肺部。

氙气“大阅兵”

磁共振检查前,小邹吸进去的那袋神秘气体,是超极化后的氙气(129Xe)。

“之前我只知道氙气是一种惰性气体,没有太多了解,所以吸入之前还是有点担心。”小邹告诉《中国科学报》记者,“不过吸了后觉得,跟我们普通呼吸没有什么区别。”

在基金委国家重大科研仪器设备研制专项“用于肺部重大疾病研究的磁共振成像系统研制”的资助下,在基金委医学部和中科院的大力支持下,科研人员使用级联激光光泵的核心技术,成功研制出气体产率高、控制自动化、可移动式的氙气体极化装置,能将氙气原子核自旋的极化度增强倍数提高到44000倍以上。

这台完全自主研发的气体极化装置是周欣团队的“秘密武器”,也是研究所积累30年的成果,拥有20多项发明专利。

“一般状态下,气体原子是杂乱排列的,只有极少数原子对磁共振信号有贡献。”周欣说,“超极化的过程相当于把‘散漫’的氙气集合起来进行‘大阅兵’。大家排列整齐后朝着同一个方向,能大大提高信号灵敏度,将磁共振信号放大。”

超极化之后,惰性的氙气变成神奇的“仙气”,从而帮助科学家突破传统磁共振不能对肺部成像的限制,成功“点亮”肺部。更重要的是,这种气体安全无毒,具有良好的脂溶性和化学位移敏感性,在肺部气血交换功能探测上具有独特优势,因此在肺部疾病早期检测方面有很大潜力。

一个医生的愿望

肺病猛于虎。这一点,没有人比天天守在屏幕前看片子的武汉大学中南医院医学影像中心教授、主任医师吴光耀更加清楚。

近年来,由于吸烟、空气污染、人口老龄化等多种因素,慢性阻塞性肺疾病、哮喘、尘肺等肺部疾病的发病率逐年上升。以肺癌为例,与30年前相比,我国肺癌死亡率上升了468%。随着空气质量下降,目前在城市里,每4个死亡的癌症患者中,大约就有1个死于肺癌。

“如果能在早期发现肺癌,病人存活的希望会大大提高。”目前,吴光耀团队已开始与周欣团队合作开展临床前研究。他发现,这种无侵入、无放射性的技术能将肺部通气缺陷尽收眼底,从而为早期肺部疾病提供了全新的影像学技术。

而且,这项技术还能查找一些用其他方法发现不了的微小病灶。在小邹的肺部磁共振图像上,右肺的一个小黑洞就没有被CT检查出来。

“利用这种定量、精准、安全的可视化方法,医生可在肺部发生结构性病变之前就发现功能上的改变,从而开展肺部重大疾病的早期检测。未来,我们还可以对肺病患者的治疗效果、预后情况进行评判,并且能开展药物研究,用途非常广泛。”吴光耀说。

“受限于超极化仪器的高技术门槛和检测费用,目前超极化气体肺部MRI虽尚未应用于临床,但国内外医学界都已意识到这项技术的潜力,并正在开展相关研究,以期进一步提高图像分辨率,提高气体交换动力学研究技术。”周欣盼望着,这项技术能尽早应用于临床,解决老百姓的实际问题。

《中国科学报》 (2015-09-08 第1版 要闻)

日期:2015年9月8日 - 来自[呼吸系统相关]栏目
共 21 页,当前第 1 页 9 1 2 3 4 5 6 7 8 9 10 11 :

ads

关闭

网站地图 | RSS订阅 | 图文 | 版权说明 | 友情链接
Copyright © 2008 39kf.com All rights reserved. 医源世界 版权所有
医源世界所刊载之内容一般仅用于教育目的。您从医源世界获取的信息不得直接用于诊断、治疗疾病或应对您的健康问题。如果您怀疑自己有健康问题,请直接咨询您的保健医生。医源世界、作者、编辑都将不负任何责任和义务。
本站内容来源于网络,转载仅为传播信息促进医药行业发展,如果我们的行为侵犯了您的权益,请及时与我们联系我们将在收到通知后妥善处理该部分内容
联系Email: